Modulation of monomer conformation of the BglG transcriptional antiterminator from Escherichia coli.
نویسندگان
چکیده
The BglG protein positively regulates expression of the bgl operon in Escherichia coli by binding as a dimer to the bgl transcript and preventing premature termination of transcription in the presence of beta-glucosides. BglG activity is negatively controlled by BglF, the beta-glucoside phosphotransferase, which reversibly phosphorylates BglG according to beta-glucoside availability, thus modulating its dimeric state. BglG consists of an RNA-binding domain and two homologous domains, PRD1 and PRD2. Based on structural studies of a BglG homologue, the two PRDs fold similarly, and the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have recently shown that the affinity between PRD1 and PRD2 of BglG is high, and a fraction of the BglG monomers folds in the cell into a compact conformation, in which PRD1 and PRD2 are in close proximity. We show here that both BglG forms, the compact and noncompact, bind to the active site-containing domain of BglF, IIB(bgl), in vitro. The interaction of BglG with IIB(bgl) or BglF is mediated by PRD2. Both BglG forms are detected as phosphorylated proteins after in vitro phosphorylation with IIB(bgl) and are dephosphorylated by BglF in vitro in the presence of beta-glucosides. Nevertheless, genetic evidence indicates that the interaction of IIB(bgl) and BglF with the compact form is seemingly less favorable. Using in vivo cross-linking, we show that BglF enhances folding of BglG into a compact conformation, whereas the addition of beta-glucosides reduces the amount of this form. Based on these results we suggest a model for the modulation of BglG conformation and activity by BglF.
منابع مشابه
BglG, the transcriptional antiterminator of the bgl system, interacts with the beta' subunit of the Escherichia coli RNA polymerase.
The Escherichia coli BglG protein antiterminates transcription at two terminator sites within the bgl operon in response to the presence of beta-glucosides in the growth medium. BglG was previously shown to be an RNA-binding protein that recognizes a specific sequence located just upstream of each of the terminators and partially overlapping with them. We show here that BglG also binds to the E...
متن کاملActivation of Escherichia coli antiterminator BglG requires its phosphorylation.
Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antitermi...
متن کاملNew beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
The Bacillus subtilis sacY and sacT genes encode antiterminator proteins, similar to the Escherichia coli bglG gene product and required for transcription of sucrose metabolism genes. A Tn10 insertion into bglP (formerly sytA) has been previously identified as restoring sucrose utilization to a strain with deletions of both sacY and sacT. The nucleotide sequence of bglP showed a high degree of ...
متن کاملTranslation efficiency of antiterminator proteins is a determinant for the difference in glucose repression of two β-glucoside phosphotransferase system gene clusters in Corynebacterium glutamicum R.
Corynebacterium glutamicum R has two β-glucoside phosphoenolpyruvate, carbohydrate phosphotransferase systems (PTS) encoded by bglF and bglF2 located in the respective clusters, bglF-bglA-bglG and bglF2-bglA2-bglG2. Previously, we reported that whereas β-glucoside-dependent induction of bglF is strongly repressed by glucose, glucose repression of bglF2 is very weak. Here, we reveal the mechanis...
متن کاملModulation of transcription antitermination in the bgl operon of Escherichia coli by the PTS.
BglG, which regulates expression of the beta-glucoside utilization (bgl) operon in Escherichia coli, represents a family of RNA-binding transcriptional antiterminators that positively regulate transcription of sugar utilization genes in Gram-negative and Gram-positive organisms. BglG is negatively regulated by the beta-glucoside phosphotransferase, BglF, by means of phosphorylation and physical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 186 20 شماره
صفحات -
تاریخ انتشار 2004